Novel Expression Patterns of Metabotropic Glutamate Receptor 6 in the Zebrafish Nervous System
نویسندگان
چکیده
The metabotropic glutamate receptor 6 (mGluR6 or GRM6) belongs to the class III of the metabotropic glutamate receptor family. It is the only known mGluR that mediates direct synaptic transmission in the nervous system and is thought to mediate the ON-response in the ON-pathway of the vertebrate retina. Phylogenetic and gene structure analysis indicated that the zebrafish genome harbours two mglur6 paralogs, mglur6a and mglur6b. Besides expression in the inner nuclear layer and distinct regions in the brain, both mglur6 paralogs are expressed in ganglion cells of the retina, an expression pattern which can also be observed in the downstream effector molecules gnaoa and gnaob. This unexpected expression pattern is consistent with immunohistological labeling using a peptide antibody specific for the mGluR6b paralog. These expression patterns contradict the existing view that mGluR6 is solely located on ON-bipolar cells where it functions in signal transmission. Consistent with expression in ON-bipolar cells, we report a decreased b-wave amplitude in the electroretinogram after morpholino-based downregulation of mGluR6b, showing a function in the ON response. Our data suggest more widespread functions of mGluR6 mediated signaling in the central nervous system, possibly including sign reversing synapses in the inner retina.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملPhylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio).
Glutamate, the most abundant excitatory neurotransmitter of the central nervous system, modulates synaptic transmission and neuronal excitability via metabotropic glutamate receptors (mGluRs). These receptors are essential components for diverse cognitive functions and they represent potential drug targets for the treatment of a number of neurological and psychiatric disorders. Here we describe...
متن کاملMetabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملmglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions.
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012